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Highly accurate absolute measurements of the X-ray structure factors of silicon [Aldred & Hart, Proc. R. 
Soc. London, Ser. A, (1973), 332, 223-238] have been used to analyse a number of models for the electron 
distribution. Initially, the valence-electron distribution (with the neon core assumed to be unmodified from 
that of the isolated silicon atoms) was built up with a radial basis of the form r ~ exp (-Q') and non-sphericity 
was allowed for by inclusion of octupole and hexadecapole terms. Improved representation was achieved 
with related models in which deformations from the total isolated-atom electron density were refined instead. 
The exact shape of the deformation electron density in the region of the bond was sensitively dependent 
on the monopole deformation term. The anomalous-dispersion contributions (Af') to the scattering factors 
were refined and found to be in agreement with recent interferometric measurements, but not with recent 
calculations. The octupole density term is slightly sharper at 293-2 than at 92.2 K, and the structure 
factor for the 222 reflection is predicted to be larger at the higher temperature. These effects may be due 
to a failure of the convolution approximation or to uncertainties in the anharmonic corrections to the 
structure-factor data. 

Introduction 

The one-electron density of a molecular system is a 
fundamental observable (Hohenberg & Kohn, 1964) 
which, in principle, can be measured by coherent X-ray 
scattering. The qualitative description of a molecule 
as a sum of deformed atoms (or 'pseudo-atoms') has 
long been popular in chemistry, and recent work by 
Bader and co-workers (see, for example, Srebrenik & 
Bader, 1975) indicates that this viewpoint may have a 
more rigorous basis in that the properties of a system 

may be expressible in terms of those of its component 
density fragments. 

A variety of pseudo-atom definitions have been pro- 
posed for the analysis of X-ray diffraction data 
(Dawson, 1967a; Kurki-Suonio & Ruuskanen, 1971; 
Hirshfeld, 1971; Stewart, 1972, 1973a; Sygusch, 1974). 
The essential differences were discussed in a previous 
paper [Price & Maslen (1978), hereinafter referred to 
as paper II]. It was shown there that in the analysis of 
powdered-diamond diffraction data most of the models 
resulted in similar fits to the data (R and R w factors of 
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approximately 0.01, and a GoF of near 3)* and gave 
similar descriptions of broad charge-density features, 
but differed in their determinations of the Debye-Waller 
B value. Several of the models have been useful in the 
description of the electron density in crystals of small 
organic molecules containing first-row atoms and 
hydrogen (Hirshfeld, 1971; Hard & Hirshfeld, 1975; 
Hard, Hecht & Hirshfeld, 1975; Berkovitch-Yellin & 
Leiserowitz, 1975; Price, Varghese & Maslen, 1978, 
paper V). Their suitability for structures containing 
second-row atoms or transition metals has not been 
tested. 

Just as diamond, with valence electrons belonging to 
the L-shell, might reasonably be regarded as a proto- 
type for valence-density models intended for use with 
first-row atoms, the silicon electron density serves as a 
reference for the study of the M-shell valence distribution 
to be found in second-row atoms. Apart from the 
analysis of Aldred & Hart (1973b, see below), previous 
analyses of the electron density in silicon (Dawson, 
1967b; McConnell & Sanger, 1970; Kurki-Suonio & 
Ruuskanen, 1971) were based on structure factors of 
precision 0.5% at best (see also Dawson, 1975). 

The Pendellrsung data of Aldred & Hart (1973a) 
are of accuracy better than 0.2%. These data consist of 
measurements of the absolute structure factors of 
crystalline silicon out to Miller indices of 8,8,0 (with 
some reflections excluded) collected at 92.2 and 293.2 
K with Mo Ka~ and Ag Ka~ radiations. 

Aldred & Hart (1973b) analysed their data in terms 
of an electron-density model similar to that proposed 
by Dawson (1967b), except for a '6.8% expansion of 
the valence shell'. This model, in the notation of paper 
II, represents the thermally-averaged deformation 
density with octupole and hexadecapole terms of 
Gaussian radial dependence with radial order 2 and 
exponent fixed at the value (0.88 A -2) suggested by 
Dawson (1967b). The expansion of the valence shell 
was parametrized by using a monopole deformation 
term of the form 

Af(s, 8) = [fsl(S) - fsi,+(s,)] - [fsl(S) - fsl,+(s)l, 

where s is sin 0/2, s t = s (1 - 8) and fsi(S) and fsi,+(s) 
are the scattering factors of the isolated atom and the 
ion taken from the International Tables for X-ray 
Crystallography (1962). The parameter 8 was deter- 
mined to be 0.068 and this 6.8% contraction of the 

* Agreement factors R and R~ are defined as 

R = Z, IAFt l /F . IF  1 obs I 
R w = [(I2 w i A F 2 I E  w,F~, obs)l u2 

and the goodness of fit parameter (GoF) as 

GoF = [ Y., w~ A V 2 / ( n  - m)] 1/2, 

where A F  t is the difference between the observed, Fi, obs, and calcu- 
lated, Fi, talc, structure factors, w~ is the weight of the/ th  structure 
factor, n is the number of observed structure factors and m is the 
number of parameters. 

valence-shell scattering factor was described as a 6.8% 
expansion of the valence shell. 

In their analysis Aldred & Hart (1973b) used the 
dispersion corrections Af~ o = 0.090 and Af~g = 
0.060 for Mo Ka~ and Ag Ka I radiation respectively 
(Cromer, 1965), but concluded that these should be 
increased slightly to Af~ o = 0.103 and Af, l,g = 0-073. 

After correction for anomalous dispersion and the 
different temperature factors, Aldred & Hart (1973b) 
considered the four data sets to be identical within the 
errors. Their final R factor, for the averaged data, was 
0.0014. Although this is small by crystallographic 
standards it is higher than is expected from the quoted 
experimental errors in the measurements. Their calcu- 
lated structure factor (per atom) for the 'forbidden' 
222 reflection at room temperature is -0 .169  + 0.005, 
which is somewhat below most of the direct experi- 
mental results (see Table 6). 

In this paper we re-analyse Aldred & Hart's (1973a) 
data, firstly in terms of an at-rest valence-density model 
and then in terms of an at-rest deformation-density 
model. The pseudo-atom density functions chosen have 
the angular dependence of the surface harmonics 
(multipoles) and exponential radial functions with 
optimized exponents, as in paper II. The multipole 
expansion is limited to the hexadecapole (fourth- 
order) level. 

Thermal motion 

We assume initially that the convolution approximation 
(or rigid-ion model) is valid. The atomic scattering 
factor is then multiplied by a temperature factor which 
is the Fourier transform of the nuclear smearing 
function. 

The temperature factor arises from both harmonic 
and anharmonic components of the atomic vibrations. 
The dominant anharmonic effect is expected to be due 
to the cubic term in the 'effective one-particle potential' 
(Dawson, Hurley & Maslen, 1967). The data of Aldred 
& Hart (1973b) do not go out to sufficiently high 
angles to determine accurately the cubic force constant, 
so that it was necessary to apply an anharmonic correc- 
tion to the structure factors before investigating the 
charge-density information. Roberto, Batterman & 
Keating (1974) have estimated the cubic anharmonic 
force constant from neutron-diffraction measurements 
of the 222 reflection as fl = 5.42 x 10 -12 erg ]k -3 at 
room temperature. The expression which they used for 
the anharmonic temperature factor is the high- 
temperature limit of that given by Dawson & Willis 
(1967), i.e. the Debye-Waller factor, B, in the latter is 
replaced by 8zt2kT/a, where a has a constant value of 
7.85 x 10 -12 erg A -2 and k is the Boltzmann constant. 
Because of a fortuitous near-cancdlation of terms, the 
expression used by Roberto et al (1974) gives the 
quantum-corrected value for fl at room temperature to 
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a very good approximation (see Mair & Wilkins, 1976). 
Even at 92-2 K, the above high-temperature approxi- 
mation is sufficiently good to allow correction of the 
data of Aldred & Hart (1973b) for anharmonic effects 
without incurring significant error, assuming that the 
effective one-particle potential model is still applicable. 
The corrections were applied with the above value of fl 
used at both temperatures. The effect on the structure 
factors was found to be less than their standard 
deviations in all cases except for the 555 reflection at 
room temperature. 

The Debye-WaUer B value, which is constrained to 
be isotropic by the site symmetry, was included as a 
parameter in the analysis. As discussed in paper II, the 
omission of monopole terms from the deformation- 
density model may cause the determined B value to be 
in error. When monopole terms with adjustable ampli- 
tudes are included in the charge-density model, the 
resulting high correlation between the amplitudes and 
the B value precludes their simultaneous determination. 
Since there is no accurate, independent measurement 
of the B value we are forced to determine it from the 
data. The amount by which it will be in error will 
depend on the errors in the atomic core density and in 
the anomalous dispersion corrections, and on the 
amount of core deformation in the bonded system. 
Fortunately the last is expected to be small. 

Following Aldred & Hart (1973b), the nuclear 
contribution to the structure factors was taken to be 
0.004 electron units, and, initially, the anomalous 
dispersion corrections of Cromer (1965) were used. 
These were assumed to be diminished with scattering 
angle by the Debye-Waller factor. 

The errors quoted in Table 3 of Aldred & Hart 
(1973a) were taken as estimated standard deviations 
(e.s.d.'s) in the structure factors, and weights were 
assigned to be the inverse squares of these e.s.d.'s. 

Valence  dens i ty  

Stewart's (1972, 1973a) valence-density model has 
been useful in the description of the electron density in 
systems of first-row atoms and hydrogen (Stewart, 
1973b; paper V). The neon-core density is calculated 
from the Hartree-Fock Is, 2s and 2p orbitals of silicon 
as listed by Clementi (1965), each of which is popu- 
lated with two electrons. The valence density is written 
as the sum of monopole, octupole and hexadecapole 
terms, of the form 

#o(r)= Pval[Z~+3/(nv + 2 ) ! ] r ' v e x p ( - - Z v r ) / 4 z t  (1) 

Pa(r) = O[Z~9o+3/(n o + 2 ) ! ] r n o e x p ( - Z o r l [ x y z / r 3 l  (2) 

P4(r) = H [ Z ~ , +  3/(nH + 2)!l r",, e x p ( - Z . r )  

× [160/(27V/3zO] [x 4 + y4 + z 4 -- (3/5)r4]/rL 

(3) 
Symmetry and electroneutrality constrain Pva~ to equal 

4 e. Following the usual practice, we initially constrain 
the exponents Z r, Z o and Z H to be equal, and write 
this exponent as 2Z. The radial orders were initially 
fixed at n z = 4, n o = 3, n n = 4. 

As in the analysis of diamond by Stewart (1973b), 
and in papers IV (Price, Maslen & Delaney, 1978) and 
V, we initially constrain the valence exponent to the 
standard molecular value (Hehre, Ditchfield, Stewart & 
Pople, 1970) of Z = 1.52 bohr -l. In contrast to the 
cases of structures containing only first-row atoms 
(papers IV and V), in silicon there was a significant 
improvement in the fit to the data with the inclusion 
of the octupole and hexadecapole terms. The final 
GoF parameters were near the value 6. 

The effect of exponent refinement was similar to that 
in the other analyses. At the 'scalars only' level of the 
model (i.e. refinement of the B value and the exponent, 
Z, with O and H constrained at zero) the exponent 
was not significantly different from the standard 
molecular value. Inclusion of the octupole term resulted 
in a significant improvement to the model and a 
decrease in the exponent to 1.49 (2)* bohr -~. Subse- 
quent addition of the hexadecapole resulted in a 
further improvement in the fit and an exponent of 
1.48 (2) bohr -l. These four parameter ( B , Z , O , H )  
results for Aldred & Hart's (1973b) four data sets are 
shown in Table 1. For comparison purposes a refine- 
ment of the valence-density parameters was also made 
using as data the calculated structure factors for the 
isolated-atom situation [with Clementi's (1965)wave- 
functions] and a B value of zero. The results are shown 
as 'data set 5'. The experimental e.s.d.'s for the structure 
factors of data set 5 were taken as the mean of those 
of data sets 1 to 4. The fit of the valence-density model 
to data set 5 is not good (GoF = 3-4, R = 0.0026), 
suggesting that our radial basis set could be improved. 
The B value of - 0 .025  (4) A 2 suggests that the B 
values with the valence-density model will be some 
0.025 A 2 smaller than those using a simple defor- 
mation-density model. That this is indeed the case can 
be seen from the results of the next section. 

The final refinement indices are GoF ~_ 5, R w 
0.004, R ~_ 0.004, indicating that the fit to the data 
is much poorer than that obtained by Aldred & Hart 
(1973b) using the Dawson (1967b) model. Thus, the 
simple valence-density model, with its single expon- 
ential radial functions, is clearly inadequate to 
describe accurately the charge density and thermal 
motion in silicon. This conclusion was not altered by 
variation in the radial order of the multipole terms, by 
separate refinement of the multipole exponents or by 
allowing, through variation of the 2s, 2p and valence 
popuations, transfer of charge from the L shell to the 
M shell. This confirms an earlier observation by Allen- 

* Least-squares parameter e.s.d.'s, multiplied by the GoF and 
expressed in the same units as the last significant figure, are 
enclosed in parentheses. 
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Table  1. Silicon valence density model (B Z 0 H [3,4]) 

The orders of the octupole and hexadecapole radial functions were fixed at 3 and 4 respectively. All of the valence exponents were con- 
strained to be equal. The fifth column contains the mean values, with the distribution e.s.d, in parentheses. The data set 5 analysis used 
'experimental' structure factors calculated from the isolated atom approximation [with Clementi's (1965) wavefunctions] and a B value of 
zero. 

8(A 2) 
Z(bohr-i) 
O(e) 
H(e) 

Fro.3* 

GoF 

R W 
R 

Data Data Data Data Data 
set 1 set 2 set 3 set 4 set 5 

92.2 K 92.2 K 293.2 K 293.2 K HF 
Mo Kcq Ag Ka, Mo Ka~ Ag Ka~ Mean Clementi (1965) 

0.205 (7) 0.202 (8) 0.436 (8) 0.439 (4) 0.204/0.438 -0.025 (4) 
1.48 (2) 1.48 (2) 1.48 (1) 1.49 (2) 1.48 (1) 1.46 (1) 
0.23 (6) 0.26 (6) 0.32 (6) 0.17 (5) 0.25 (6) 0.05 (5) 

-0 .13 (5) -0 .16  (5) -0 .21 (8) -O. 13 (5) -0 .16  (4) 0.00 (2) 

0.38 (1) 0.38 (1) 0.38 (0) 0.38 (1) 0.38 (0) 0-39 (0) 

4-6 5-5 6.5 4.6 5.3 (9) 3.4 

0-0045 0-0052 0-0019 0.0043 0.0040 (14) 0.0032 
0.0042 0-0049 0.0053 0.0039 0-0046 (6) 0.0026 

Results from Aldred & Hart's (1973b) analysist Bl2 = 0-227 (3) O = 0-463 
B34 = 0.461 (3) H = --0.175 
R =0.0014 r,,.3 = 0.64 

* The position of the maximum of the function r2p3(r) is expressed as a fraction of the bond length. In this model it is largely determined 
from the shape of the monopole term. 

t Aldred & Hart (1973b) used Gaussian radial functions, and constrained the Gaussian breadth parameter at Dawson's (1967b) value of 
0.88 A-L 

Table  2. Silicon deformation density (B 0 Z o H [4,4]) 

The orders of both the octupole and hexadecapole radial functions were fixed at 4, and both exponents, Zo and 
Z u were constrained to be equal. The 222 structure factors (per atom), f222, have been corrected for explicit 
thermal-motion effects. 

Data Data Data Data 
set 1 set 2 set 3 set 4 Mean 

Temperature 92.2 K 92.2 K 293.2 K 293.2 K 

Radiation Mo Ka t Ag Kat Mo Ka~ Ag Ka t 

B(A 2) 0.239 (7) 0.236 (6) 0.469 (5) 0.467 (4) 0.237 (2) 
0.4685 (1) 

O(e) 0.33 (6) 0.35 (4) 0.32 (4) 0.31 (4) 0.326 (18) 
Zo(bohr -~) 2.66 (25) 2.73 (18) 2.71 (18) 2.70 (18) 2.70 (3) 
H(e) -0.08 (6) -0 .10 (5) --0.07 (6) -0 .08 (4) -0.084 (12) 

rm,3* 0.51 (5) 0-49 (3) 0.50 (3) 0-50 (3) 0.500 (6) 

f222 0.173 0.194 0.178 0.169 0.179 (I1) 

GoF 4.7 4.5 4.3 3-8 4.3 (4) 
R w 0.0046 0.0043 0.0013 0-0035 0.0034 (I 5) 
R 0"0030 0.0030 0.0028 0.0025 0.0028 (2) 

* The position of the maximum of the function r2p3(r) is expressed as a fraction of the bond length. 

Wil l iams,  De laney ,  Fur ina ,  Mas len ,  O ' C o n n o r ,  
V a r g h e s e  & Y u n g  (1974)  tha t  this type  o f  m o d e l  does  
no t  sample  the  dens i ty  efficiently for s e c o n d - r o w  a toms .  

Deformat ion  density 

Our  next  m o d e l  for the cha rge  dens i ty  uses the  isola ted 
a t o m  as a basis and  represents  d e f o r m a t i o n s  f rom this 
with func t ions  similar  to those  used in the prev ious  

section.  The  i so l a t ed -a tom scat ter ing fac tors  used  were  
those  o f  D o y l e  & T u r n e r  (1968).  These  p r o v e d  slightly 
super ior  to  the  earl ier  values  o f  C lemen t i  (1965) .  

W e  start  with the  s t anda rd  c rys ta l lograph ic  charge-  
dens i ty  m o d e l  ( isola ted a t o m  or  z e r o - d e f o r m a t i o n  
dens i ty  mode l )  by  refining only  on  the  B value.  T h e  
result ing re f inement  indices  (R ,-~ 0 .007 ,  G o F  ~_ 10) are 
a rough  m e a s u r e  o f  the  i n a d e q u a c y  o f  this m o d e l  for the  
sil icon s t ructure .  

Fo l lowing  the  d i a m o n d  analys is  (pape r  H) we  next  
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include third and fourth-order terms as given by 
equations (2) and (3) with n o = n n and Z o = Z n. The 
four adjustable parameters are B, O, Z o and H. These 
results are shown in Table 2. The mean values are 
shown in the right-hand column. Numbers in brackets 
there relate to the estimated standard deviation, Sx, 
of the distribution of the values of x, where 

sx = { [ Z ( x -  y c ) V ( n  - 1)1} ''~, 

rather than to the e.s.d, of the mean (s~ = S J v / n  ). 

Following normal practice the parameter e.s.d.'s have 
been multiplied by the GoF to allow for the precision of 
the structure factor measurements. 

The mean GoF is 4.3 (4) and mean R factor 
0.0028 (2), both a little less than those of the valence- 
density analysis, but still reflecting opportunity for 
improvement. This model then, is also inadequate. 
Nevertheless it is interesting to compare the results 

Table 3. Si l icon de format ion  dens i ty  

(a) B PC Z 0 Z o H [3,41 

The radial orders of the octupole and hexadecapole functions were fixed at 3 and 4 respectively. The exponents Zo, Zn 
were constrained to be equal. The 222 structure factors (per atom), J222, have been corrected for explicit thermal 
motion effects. 

Data Data Data Data 
set 1 set 2 set 3 set 4 Mean* 

Temperature 92.2 K 92.2 K 293.2 K 293-2 K 

Radiation Mo Kat Ag Ka~ Mo Ka~ Ag Kcq 

B(A 2) 0.2375 (13) 0.2338 (16) 0.4690 (10) 0.4671 (12) 0.2357 (26) 
0.4681 (13) 

PC(e) 0.38 (9) 0.30 (8) 0.35 (8) 0-20 (5) 0.34 (4) 
Z(bohr -~) 2-21 (10) 2-30 (14) 2-18 (10) 2-53 (18) 2-23 (6) 
O(e) 0.48 (6) 0.46(6) 0.49 (5) 0.42 (4) 0.48 (2) 
Zo(bohr-'  ) 1.76 (6) 1-83 (7) 1-83 (6) 1.96 (7) 1.81 (4) 
H(e) -0 .37  (4) -0.31 (4) -0 .33  (4) -0 .19  (3) -0-34 (3) 

g t  0.56 (3) 0.54 (3) 0.57 (3) 0.49 (3) 0-553 (15) 
rm.3~ 0.64 (2) 0.61 (2) 0.61 (2) 0.54 (2) 0.623 (14) 

f222 0" 145 0" 150 0" 161 0" 167 0" 152 (8) 

GoF 0-76 0.91 0.69 I. 13 0.79 (11) 
R w 0.0007 0.0008 0.0002 0.0010 0.0006 (3) 
R 0.0006 0.0009 0.0005 0.0008 0.0007 (2) 

(b) B PC Z 0 Z o H [4,4] 

The radial orders of the octupole and hexadecapole functions were both constrained to be 4. The exponents Z o, Z ,  
were constrained to be equal. The 222 structure factors (per atom)f222, have been corrected for explicit thermal- 
motion effects. 

Data Data Data Data 
set 1 set 2 set 3 set 4 Mean* 

Temperature 92.2 K 92.2 K 293-2 K 293.2 K 

Radiation Mo Kcq Ag Ka~ Mo Kcz I Ag Ka~ 

B(A 2) 0.2370 (13) 0.2335 (14) 0.4686 (11) 0.4666 (11) 0.2353 (25) 
0.4676 (14) 

PC(e) 0.31 (8) 0.24 (6) 0.27 (7) 0.16 (3) 0.27 (4) 
Z(bohr -~) 2.25 (13) 2.36 (15) 2.24 (13) 2.66 (18) 2.28 (7) 
O(e) 0.52 (6) 0.49 (5) 0.51 (5) 0.43 0-51 (2) 
Zo(bohr -~) 2-14 (7) 2-22 (6) 2.24 (6) 2.39 (6) 2.20 (5) 
H(e) --0.17 (2) --0.15 (2) --0.15 (2) --0-10 (2) --0.16 (I) 

g t  0.55 (2) 0.52 (3) 0.55 (2) 0.46 (3) 0.540 (15) 
r,,,35 0-63 (2) 0.61 (1) 0-56 (1) 0.614 (15) 

f222 0- 175 0" 181 0" 195 0" 194 0" 184 (10) 

GoF 0.77 0.83 0-73 1.09 0.78 (5) 
R w 0.0007 0.0007 0.0002 0.0009 0.0005 (3) 
R 0.0006 0.0008 0-0006 0.0008 0-0007 (1) 

* Means of data sets 1-3 only. 
t The position of the (central) zero of the function P0(0. 
.1: The position of the maximum of the function r2p3(r), expressed as a fraction of the bond length. 
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with those of the same model (model II) of the diamond 
analysis (paper II). The total-electron redistributions, 
O, caused by the octupole functions, are very similar 
[diamond 0.33 (4), silicon 0.33 (2)] and the positions 
of the maxima of r2p.~(r) as fractions of the bond 
lengths are not very different [diamond 0.56 (3), silicon 
0.500 (6)]. The total-electron redistributions, H, caused 
by the hexadecapoles differ somewhat ]diamond 
0.24(7),  silicon 0.08(1)].* The R factors are: 
diamond, R = 0.0094; silicon, R = 0.0028 (2). The 
relative effect of bonding on the silicon charge density 
might be expected to be smaller than that of diamond 
by a factor between 2.3 (the ratio of the number of 
electrons in the atoms) and 5 (the ratio of the number 
of electrons in the cores). The silicon R factor is smaller 
than that of diamond by the factor 3.4. The silicon 
GoF [4.3 (4)] is larger than that of diamond (2-9), 
which is consistent with the smaller errors in the 
structure factors for the former. 

Since Aldred & Hart (1973a) had found evidence of 
expansion of the valence shell it was clear that a 
monopole deformation function would improve the 
model. A function was chosen of the form 

P0(r) = { P A ' [ N  o + N o ( Z  v - 2 8 ) r -  N i ( Z v - 4 2 ) r  2] 
+ P B ' ( - - N  2 r 2 + N 3 r a) 
+ P C ' ( - N 2  r2 + N 4 r 4 ) } e x p ( - Z v r ) ,  (4) 

where N i =  Ziv+3/(i + 2)! are normalization constants. 
This function integrates to zero and leaves the cusp 
condition unaltered. As in paper II the least-squares 
refinement was ill-conditioned with correlation co- 
efficients between the three populations, PA' ,  PB '  and 
PC' ,  greater than 0.9. Henceforth PA'  and PB'  were 
fixed at zero and only PC'  and Z v were included as 
parameters. Following the normalization convention of 
paper II, namely that the population parameter of a 
deformation term should indicate the number of 
electrons transferred from the negative regions to the 
positive regions, we quote the monopole population, 
PC, where 

(3O 

P C  = PC'  f ( N  4 r 4 - -  N 2 r 2) e x p ( - Z  v r)r 2 dr 
R 

-- PC'(0.328533), 

with R -- V / 3 0 / Z v  satisfying P0(R) = 0. Unlike the 
diamond analysis, however, the exponent Z v did not 
refine to a high value and the correlation (about 0.5) 
between it and the B value was not high. Thus it was 
possible to determine both in the analysis. 

Rather than discuss each set of results as the level 
of the model was extended we shall only consider in 
detail results at the 'B P C  Z v 0 Z o H [3,4]' and 
'B PC Z v Z o H [4,4]' levels ]Table 3(a) and 3(b) 
respectively]. This coding indicates which parameters 
are varied in the least squares. They are the B value 
(B), the amplitude (PC) and width (Zv) of the mono- 

* Note that the redistribution into each bond is 0/4 for the 
octupole and HI8 for the hexadecapole. 

pole function as in (4), and the amplitudes (O and H) 
and width ( Z  o = Zv)  of the octupole and hexadecapole 
functions as in (2) and (3). The numbers in square 
brackets refer to the orders, n o and n n respectively. The 
parameters of the fifth column of Tables 3(a) and (b) 
are means of only the first three data sets. The 
parameters resulting from data set 4 appear somewhat 
different from those of data sets 1 to 3. This is probably 
due to the unusually low experimental e.s.d, of the 
880 structure factor of data set 4. The correspondingly 
high weight given to this structure factor in the refine- 
ment causes the least-squares parameters to be modi- 
fied slightly. The final (AF/a )  2 for this reflection contri- 
butes some 46% and 40% respectively to the final X 2 of 
the [3,41 and [4,41 models. 

Of prime importance is the GoF parameter, which is 
0.79 (11) and 0-78 (5) for the two models representing 
a reduction by a factor of five compared with the 
GoF's in Tables 1 and 2. This indicates that both 
models describe the data adequately, with it assumed 
that the experimental e.s.d.'s are accurate. The R factors 
are near 0.0007, half of the value from Aldred & 
Hart's (1973b) analysis. The particularly low weighted 
R factor of 0.0002 for data set 3 may be a consequence 
of the unusually low e.s.d. (a = 0.001) for the 111 
structure factor. 

The B values for both models are similar to each 
other and to that for the B 0 Z o H [4,4] refinement of 
Table 2. These results are 0.008 greater than those of 
Aldred & Hart (1973b) [who obtained B = 0.227 (3) 
at 92.2 K and B = 0.461 (3) at 293.2 K]. 

On the other hand, there are some differences in the 
electron-density parameters. The monopole and 
hexadecapole populations are smaller, while the 
octupole population is larger in the [4,4] analysis than in 
the [3,41 analysis. The octupole and hexadecapole 
populations are considerably larger than those of the 
B 0 Z o H analysis. The sign of the monopole popu- 
lation is such as to redistribute electrons from near the 
nucleus (r < R) to regions further from the nucleus 
(r > R). Since R, as a fraction of the bond length, is 
0.54 (2), the overlap of the neighbouring atom results 
in the function having little direct effect on the charge 
density along the bond. However, the deformation 
density in the bond is a ssu~ of the octupole and 
hexadecapole amplitudes ~a6d these increase sub- 
stantially with the inclusion of~the monopole term. The 
values of the sums (0 and~ IHI) for the mean values 
from Table 3(a) and (b) are larger than the corres- 
ponding sum for the B 0 Z o H refinement (Table 2) by 
0.41 and 0-26 for the [3,..4] and [4,4] analyses respec- 
tively. These increases are approximately equal to the 
monopole populations of 0 .27(4)  and 0.34(4).  
The inclusion of the monopole term results in a more 
diffuse octupole and hexadecapole, the maximum of 
r2p3(r) increasing to a fraction, 0.61 (1) for the [4,4] 
analysis, and 0-62 (1) for the [3,4] analysis, of the 
bond length. 
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The influence of the monopole term is more readily 
appreciated by inspection of Figs. 1 and 2. Fig. 1 shows 
the calculated deformation density in a section through 
the (110) plane for data set 3 with the [4,4] model of 
Table 3(b). This may be compared with the result (Fig. 
2) for the same model with the monopole expansion 
term omitted (PC = 0). The effect of the monopole term 
is to elongate the bond deformation density across, 
rather than along, the bond axis. This result makes it 
clear that an adequate description of the non-spherical 
components of the electron density depends strongly on 
the accurate representation of the spherical com- 
ponent. 

\ \  11 

I i 

0 I 2A  

Fig. 1. Deformation density in ( I [0 )  plane for data set 3 with the 
[4,4] model of Table 3(b). Contour intervals at 0.027 e A -3. 
Negative contours broken. 

o I A 
Fig. 2. Deformation density as in Fig. 1, but with PC = 0.0 (no 

radial expansion term). Contour intervals at 0.029 e A -3. 
Negative contours broken. 
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The deformation density in Fig. 2 is closely similar 
to that obtained by Dawson (1967b, Fig. 4b)for silicon 
using three independent sets of carefully-measured data 
available at that time. Comparison with the final result 
for the accurate, absolute structure factor data for 
Aldred & Hart (1973b) (Fig. 1) gives an indication of 
the limitations for resolution of charge-density detail 
inherent in data of standard comparable to that 
analysed by Dawson (1967b). 

Anomalous-dispersion corrections 

Closer inspection of Table 3(a) and (b) shows a syste- 
matic difference between the results obtained with 
Mo Ka~ radiation and those with Ag Ka~ radiation. 
Until this stage of the analysis the anomalous-dispersion 
corrections had been fixed at Cromer's (1965) values. 
When we included the term Af '  as an adjustable 
parameter, the GoF decreased by 0.03, 0.05 and 0.19 
for data sets 1, 2 and 4, but increased by 0.04 for data 
set 3. The systematic differences between data sets were 
reduced. There was very high correlation between Af '  
and the B value. The resulting Af '  values were 
0-081 (8), 0.090 (6) for data sets 1 and 3 (Mo Ka~ 
radiation) and 0.050 (7), 0.044 (7) for sets 2 and 4 
(Ag Ka~ radiation). The mean values for Af~ o and 
Afl, g are shown in Table 4. This table gives a summary 
of calculated, inferred and measured values of these 
anomalous-dispersion corrections. Its dispersion is as 
great as the list of measured values of the silicon 222 
structure factors, shown in Table 6. Our results, which 
are imprecise because of the high correlation with the 
B value, lie between the theoretical results of Cromer 
(1965) and of Cromer & Liberman (1970). They are 
in poor agreement with the theoretical values of 
Wagenfeld, Kiihn & Guttman (1973), and those deter- 
mined by Aldred & Hart (1973b) from their analysis 
of this data. While the present work was in progress 
Cusatis & Hart (1975) made an independent measure- 
ment of the dispersion corrections by scanning X-ray 
interferometry, and their results are in good agreement 
with ours. 

Table 4. Anomalous-dispersion corrections (A f ' )  

Mo Ka Ag Ka 
Theoretical 

Cromer (1965) 0-090 0.060 
Cromer & Liberman (1970) 0-072 0.042 
Wagenfeld et al. (1973) 0. I01 0.0706 

Experimental 

Aldred & Hart (1973b) 0.103 0.073 
Cusatis & Hart (1975) 0.086 (2) 0.057 (3) 
Present work 0.085 (7) 0.047 (7) 
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Predicting the 222 structure factor 

The value of the 'forbidden' 222 reflection in silicon has 
been the subject of much discussion (Fehlmann & 
Fujimoto, 1975). Aldred & Hart (1973a) did not 
measure this structure factor but its value can be 
inferred from the charge-density parameters. In paper 
II emphasis was placed on the hazards of applying 
least-squares parameters to calculations of properties 

,which are poorly defined by the data. Not forgetting 
that such estimates are likely to be strongly model- 
dependent, we calculated the value off222 exp ( - M )  at 
each level of our model, where f222 is the scattering 
factor due to the antisymmetric component of the 
electron distribution. The results are shown in Table 5, 
together with the GoF and R factors, which may be 
seen to fall as the model becomes more refined. The 
last five models shown all have a GoF of a little less 
than unity (except for data set 4) and thus should be 
adequate descriptions of the data. There is, however, a 
relatively large variation in the predicted 222 structure 
amplitudes within these five models. The room- 
temperature values lie in the range 0 .16-0 .20 .  This 
prediction of our analysis is shown in Table 6, together 
with Aldred & Hart 's (1973b)prediction and a collec- 
tion of directly-measured values from the literature. 

Close inspection of Table 5 shows that the room- 
temperature values of fz22 exp(--M) are consistently 
larger by 0.012 (3) e than the values at 92.2 K. We 
estimate that the error in the fzz2 e x p ( - M )  values is 
such as to make this a significant discrepancy. After 
division by the Debye--Waller factor the discrepancy, 
now in the size of the fzz2 values, becomes 0.015 (3). 

The higher value for the room-temperature f222 is a 
consequence of the slightly larger octupole exponent 
Z o, at room temperature. At face value it amounts to a 
prediction that the antisymmetric distortion of the 
charge density due to bonding, or at least its 222 
Fourier component, increases with temperature. 

There have been several studies, both theoretical and 
experimental, of the temperature dependence of the 222 
reflection, all for temperatures near 300 K and above. 
A discussion of these is presented in the Appendix. 
The evidence from this existing work for the validity 
of the convolution approximation as applied to the 222 
reflection in silicon is inconclusive. However, the 
measurements and calculations all indicate that the 
contribution to F22 z from the antisymmetric charge 
distribution decreases with increase in temperature. 
Our results therefore predict a temperature dependence 
which is in the opposite direction to these higher- 
temperature results. The larger exponent, Z o, at room 
temperature compared with that at 92.2 K causes the 
observed temperature dependence off222 in our results 
and seems to be analogous to the detection of a large- 
exponent bond-directed dipole term, positively corre- 
lated with the amplitude of thermal motion, on the 
hydrogen atoms in the melamine analysis (paper V). 
The latter was ascribed to failure of the convolution 
approximation. 

We are unable to make a positive statement about 
whether our results are really a consequence of failure 
of the convolution approximation. Our interpretation 
is complicated by uncertainty about the size of the 
anharmonic correction to the data of Aldred & Hart 
(1973a). The much larger value of fl = 5.42 (54) x 

Table 5. The model dependence o f  the GoF and R indices, and off222 exp ( - M )  

The model-coding scheme is explained in the text. The values off222 exp(-M) are in e atom -I and shown as '222'. Values of 104 R are 
shown as 'R'. Thosefz22 exp(-M) values which were not calculated are designated 'n.c.'. 

Data set 1 Data set 2 Data set 3 Data set 4 

Temperature 92.2 K 92.2 K 293.2 K 293.2 K 

Radiation Mo Kcq Ag Kct t Mo Kot t Ag Kai 

Model GoF R 222 GoF R 222 GoF R 222 GoF R 

Valence density 

B Z 6.8 63 n.c. 8.5 67 n.c. 7-5 64 n.c. 6-1 59 
I3,41B Z O 5.2 49 n.c. 6.0 50 n.c. 5.7 51 n.c. 5.5 50 
I3,41 B Z O H 4.5 42 n.c. 4.9 44 n.c. 4.9 42 n.c. 4.7 38 

Deformation density 
B 10.3 72 0.0 13.1 76 0.0 53.3 198 0.0 10.6 72 

14,41 B 0 ZoH 4.7 30 0.170 4.5 30 0.919 4.3 28 0.712 3.8 25 
B PCZ 4-9 36 0.0 5.7 34 0.0 5.2 37 0-0 4.3 35 

[4,4] B P C Z O  2.8 17 0.211 2.7 20 0.216 2.2 19 0.207 2.5 15 
13,41 B PC Z 0 H 2.8 20 0.227 2-5 21 0.225 2.3 18 0.222 2.6 18 
14,41BPCZOH 0.84 8 0.184 0.88 9 0.190 0.69 6 0-186 1.22 10 
13,41BPCZOZoH 0.76 6 0.143 0.91 9 0.148 0.69 5 0.156 1.13 8 
I4,41BPCZOZoH 0.77 6 0.172 0.83 8 0.178 0.73 6 0-189 1.09 8 
14,41BPCZOZoHZ n 0.82 6 0.166 0.88 8 0.177 0.79 6 0.182 1.13 8 
I4,41BPCZOHAf'  0.81 6 0.176 0.83 8 0.183 0.73 6 0.186 1.03 7 

222 

n . c ,  

n,c. 
n . c .  

0.0 
0.164 
0.0 
0-214 
0.210 
0.205 
0.162 
0-188 
0.189 
0.195 
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Table 6. Silicon room temperature 
1f222 exp(--M) l values 

Direct measurements Value (e atom-~) 

Hewat et al. (1969) 0.11 
De Marco & Weiss (1965) 0.180 (10) 
Roberto & Batterman (1970) 0.182 (5) 
Jennings (1969) 0.185 (4) 
Fujimoto (I 974) 0.188 (2) 
Colella & Merlini (1966) 0.192 
Renninger (1960) 0.194 
Fehlmann & Fujimoto (1975) 0.206 (4) 
Cramb (1970) 0-22 (2) 
G6ttlicher & W61fel (1959) 0.223 
Mean 0.188 (31) 
Weighted mean* 0-1896 (35) 
Indirect measurements 

Aldred & Hart (1973b) 0.169 (5) 
Present (overall) 0-16-0-20 
Present [4,4] modelst 0.185-0.195 
Present [3,41 modelst 0.155-0.165 

* The weighted (or least-squares) mean of those values quoting 
an error estimate, given by 2 = E wixi/r, w i, a(~) = GoF(~: wi) -t/2, 
with w t = Ia(xl)] -2 (GoF = 2.2). 

"~ The range of values off222 exp(-M) (at room temperature) of 
those models with GoF --~ 1 and with the radial orders given by 
14,41 and 13,41. Note that the former value is in excellent agreement 
with the weighted mean of the experimental values. 

10 -12 erg A -3 obtained by Roberto et al. (1974) at 
room temperature, compared with the reasonably con- 
stant value of fl ~ 2.7 x 10 -12 erg A -3 at the higher 
temperatures, suggests that the effective one-particle 
potential approximation is not good, at least for 
anharmonic terms, at room temperature and below. 
This conclusion holds, even if quantum effects are 
accounted for within the one-particle potential model, 
since the//-value as determined by Roberto et al. (1974) 
is scarcely affected at 293 K. It is likely, therefore, that 
the value of fl at 92.2 K will be larger than that at 
room temperature, in line with the experimentally 
observed increase in flin going from higher temperatures 
to 300 K. Such an increase in fl at 92.2 K would be in 
the right direction to decrease the differences in f222 
at the two temperatures. Similarly, if the room- 
temperature value of ,8 obtained by Roberto et al. 
(1974) were smaller, in close agreement with the high- 
temperature values, the differences in our f222 values 
would again be reduced. A definite conclusion, there- 
fore, awaits accurate measurements for ,8 for silicon at 
room temperature and below, presumably by using 
the high-angle reflections in a neutron-diffraction 
experiment. 

Residuals 

The mean GoF's  of our final models are about 0.8. 
This indicates that our model is an adequate description 
of the data, and that any additional elaboration of the 

model would (probably) result in an increase in the 
GoF. The final values of sgn(AF)[AF/a(F)]  2, where 
sgn is the sign function [sgn(x) = x/Ixl] ,  should be 
randomly distributed about zero with a dispersion 
measured by the root mean square value of 
sgn(AF)[AF/a(F)]  2. We estimate the latter to be about 
2.0, whereas the observed dispersion is much smaller 
than this. This examination of residuals leads us to 
conclude that the e.s.d.'s that we have been using are 
too large by a factor of about 4. This conclusion is 
supported by the observation (Hart, 1975) that the 
errors quoted in Table 3 of Aldred & Hart (1973a) are 
root mean square deviations from the mean, rather 
than estimates of the standard deviation in the mean. 
The central-limit theorem of statistics predicts that the 
uncertainty in the mean is a factor (n - 1) 1/2 smaller 
than this, where n, the number of reported observations, 
is here between 10 and 20 for each reflection. 

The above discussion has relevance only to random 
errors in the measurements. An indication of both the 
systematic and random, i.e. total, errors is provided 
by a comparison of the structure factors at the two 
wavelengths, at each temperature. This comparison 
was made by Aldred & Hart (1973a), Fig. 5, where it 
may be verified that the errors assigned by Aldred & 
Hart (1973a) to the structure factors are of the right 
order to just cover the total errors evident from the 
plots. It may be concluded, therefore, that weights 
based on the errors quoted by Aldred & Hart (1973a) 
will be of approximately the right size to account not 
only for the relatively small random errors, but also 
for the rather larger systematic errors. 

Conclusions 

The absolute structure factor data of Aldred & Hart 
(1973a) for silicon form the most accurate set available 
for any substance. Consequently, it provides a higher 
resolution of features in the electron distribution than 
that currently available for diamond and other first-row 
atom structures. We have used this data to differen- 
tiate between various models for the electron density in 
silicon. In particular, we have shown that a valence- 
density approach would require a more complicated 
type of basis set to represent second-row atom charge 
distributions than the one which has been found 
adequate with the level of accuracy available for 
first-row atoms. The deformation-detasity approach, 
with the isolated atom used as a reference, proved 
capable of modelling the electron density with a 
monopole term, representing an expansion of the 
valence electrons, and an octupole and a hexadecapole 
term, each obeying the atomic site symmetry. The 
monopole term, which has a marked effect on the 
deformation-density distribution, was not significant in 
the data analysed by Dawson (1967b). This difference 
in the results obtained from the Aldred & Hart (1973a) 
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data compared with those obtained from earlier data 
indicates that highly accurate structure-factor measure- 
ments are required if anything more than the gross 
features of the charge distribution are to be extracted 
from crystals with similar bonding effects. 

With the deformation-density model, our results 
are in agreement with the measurements of Cusatis & 
Hart (1975) for the real dispersion corrections, A f ' ,  at 
Mo Ka and Ag Ka wavelengths. We were also able to 
estimate the values of the scattering factor f222 for the 
222 reflection at 92.2 and 293.2 K. The differing 
values of f222 at the two temperatures could be inter- 
preted as evidence for a breakdown of the convolution 
approximation. However, the observed temperature 
dependence of f222 is influenced by the anharmonic 
force constant fl, which has been assumed to be the 
same at both temperatures as the value measured at 
room temperature by Roberto et al. (1974). Failure of 
the one-particle potential description as a result of 
quantum effects could lead to different conclusions 
about the temperature behaviour of the 222 structure 
factor. 

An analysis of the residuals of our final models has 
revealed that the precision of the experimental structure 
factors is higher than indicated by the errors quoted by 
Aldred & Hart (1973a), if these are interpreted as the 
e.s.d.'s for the observations. Nevertheless, the errors 
assigned by Aldred & Hart (1973a) are of the right 
order to account for the combined systematic and 
random errors inherent in the measurements. 

APPENDIX 

In experimental studies of the 222 reflection in silicon 
neutron-diffraction results have been used to separate 
out the anharmonic contributions, Fa,h, from the X-ray 
structure factor, Fx_ray(222), and obtained the part due 
to the bond, Fbo,a , with the relations 

Fx_ray (222) = F~ona -- F.n n. (A 1) 

The temperature dependence of Fbo.d may then be 
described in terms of a Debye-Waller factor, M b, for 
the bond with 

Fbond = 8 fb exp(--Mb), (A 2) 

where we initially assume that fb is independent of 
temperature. 

With this procedure the neutron and X-ray results 
of Roberto, Batterman & Keating (1974) over a 
temperature range from 288 to 1093 K indicate that 
M b = 1.2 (1)M C, where Mo is the Debye-WaUer factor 
of the core, obtained from the Debye temperature. The 
1974 work of Roberto et aL supersedes the earlier 
X-ray work of Roberto & Batterman (1970) and the 
neutron measurements of Keating, Nunes, Batterman 
& Hastings (1971), which gave a somewhat lower value 
for M v 

The X-ray measurements of Fujimoto (1974), from 
300 to 900 K, in combination with the more recent 
neutron work of Roberto et al. (1974), give an M b of 
about 1.4M o in substantial agreement with the results 
of Roberto et al. (1974). Additional measurements by 
Fujimoto (1974) of the pressure dependence of 
Fx_ray(222) up to 5.2 kbar might tend to suggest that 
fb in (A 2) has negligible implicit temperature depen-" 
dence. However, the relation between the pressure and 
temperature-dependent effects on F(222) is not clear- 
cut, especially as silicon is somewhat anomalous in 
that it contracts on melting. 

Fujimoto (1974) has also made theoretical calcu- 
lations on the mean-square vibrational amplitude of the 
bonding charge, assuming it to be located at the 
midpoint of neighbouring atoms. Using the experi- 
mental phonon-dispersion curves of Dolling (1963) he 
obtained M~ = 0.74 (5)M c (cf. M b = 1.0Me for com- 
pletely correlated motion of nearest neighbour atoms 
and M b = 0.5Me for completely uncorrelated motion). 
Chelikowsky & Cohen (1974)have calculated the sift- 
con charge density using an energy-dependent non-local 
pseudopotential. Yang & Coppens (1975) have 
obtained valence density maps from experimental data 
for silicon, principally those ofAldred & Hart (1973a). 
These maps are in substantial agreement, both in bond 
shape and bond height, with the theoretical valence 
densities obtained by Chelikowsky & Cohen (1974). 
Chelikowsky & Cohen also calculated the implicit 
temperature variation of fb from an assumed 
temperature-dependent form for the crystalline poten- 
tial and obtained a decrease in fb with increasing 
temperature. They further assumed that fb was multi- 
plied by a Debye-Waller factor, M b = 0.5M~, corres- 
ponding to uncorrelated motion of near-neighbour 
atoms. With this model they were able to obtain agree- 
ment with the results of Roberto et al. (1974) over the 
entire temperature range. 

If the antisymmetric component of the charge density 
were vibrating rigidly with the nucleus, then M b in 
(A 2) would equal M~ and the remaining temperature 
dependence would be taken up by fb- The results 
reviewed above are, however, inconclusive with respect 
to validity or failure of the convolution approximation 
for silicon, as the implicit temperature dependence of 
fb has not been established with absolute certainty. 
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